

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential

6000 Series Module CO2 Sensor

UART and SPI

Communications Protocols
(Document Revision 02)

Document Revisions
08/11/05 – Renamed document “UART_SPI_6004_X04_Protocol_02.doc”,

10/03/02 – Renamed document “UART_SPI_6004_X04_Protocol_01.doc”, and noted that CMD_READ
 and CMD_UPDATE for SNGPT_PPM available on Release 04 or later
09/25/02 – First Draft, adapted from “6000_Comm_01.doc” and “SPI_Comm_Protocol_09C.doc”

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 2

6000 Series Module CO2 Sensor
UART and SPI

Communications Protocols

Table of Contents

1. Communications Interfaces ..4
2. UART and SPI Communications Logic and Timing ..5

2.1. General System Timing ...5
2.2. Initializing Communications at Power-Up...5
2.3. Timing related to byte/command transfers...6
2.4. Hardware related timing...6

3. UART Serial Communications Interface...6
3.1. UART Tsunami Communications Protocol ..6
3.2. UART Commands from PC to Sensor ..7
3.3. UART Response from Sensor to PC...7
3.4. UART Acknowledgement or <ACK> Reply ..8
3.5. UART 0xFF Bytes and Zero Insertion..8

4. SPI Communications Interface Overview..9
4.1. SPI Handshaking – Starting To Communicate ...9
4.2. SPI Sending and Receiving Data ..10
4.3. SPI Handshaking – Between Bytes...10
4.4. SPI Handshaking – Ending a Data Exchange ...10
4.5. Aborting an SPI Data Exchange ...10

5. SPI Bus Timing ..11
5.1. SPI SK Shift Clock ...11
5.2. SPI Min/Max Timing Issues ...11

6. SPI Packet Protocol ...13
6.1. SPI Request Data-Packet ..13
6.2. SPI Response Data-Packet ..13
6.3. Example SPI Data-Packets..14

7. Command Reference for the 6000 Sensor..15
7.1. CMD_READ Commands ...15
7.2. CMD_UPDATE Commands...16
7.3. RESET and WARMUP Commands..17
7.4. CALIBRATION Commands ..18
7.5. STATUS and OPERATING Commands ..20
7.6. Test Commands ..21
7.7. CMD_PEEK Commands (For Completeness Only) ...22
7.8. CMD_POKE Commands (For Completeness Only)...23

8. UART Communication Examples ..25
8.1. UART Read CO2 PPM..25
8.2. UART CMD_STATUS to Verify Normal Operation ...25
8.3. UART Read and Update Elevation ...25
8.4. UART Error Simulation with Recovery ...26
8.5. UART Zero Calibration ..27
8.6. UART Span Calibration..28

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 3

9. SPI Communication Examples ...28
9.1. SPI Read CO2 PPM...28
9.2. SPI CMD_STATUS to Verify Normal Operation ..29
9.3. SPI Read and Update Elevation ..29
9.4. SPI Error Simulation with Recovery...29
9.5. SPI Zero Calibration ...31
9.6. SPI Span Calibration...32

Appendix 1. CRC Calculation..33
A1.1 CalcCRC ...33
A1.2 Example Calling CalcCRC ...34

Appendix 2. Summary of Commands ...35
Appendix 3. IEEE Floating Point ..37

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 4

6000 Series Module CO2 Sensor

UART and SPI
Communications Protocols

1. Communications Interfaces

The 6000 Series Module CO2 Sensor possesses two different communications interfaces with which to communicate
with an external host. The first is an asynchronous, RS-232, UART serial communications port. All communications
over this UART serial interface must be wrapped in the proprietary Telaire Tsunami Communications Protocol.

The second method of communication is the Synchronous Peripheral Interface, commonly referred to as an SPI Bus
communications interface. This interface in earlier documentation is referred to as a MICROWIRE1 Bus Interface. All
communications over the SPI bus require a protocol different from the Tsunami Protocol.

A physical diagram of the interface connector is shown below: (Note that these signals are received/transmitted with a
74HC244 CMOS line driver)

Both UART and SPI communications share a common command syntax and repertoire of commands. In fact, both
communication interfaces share the same microcontroller resources for pointers, variables, and message buffers.
Hence, the Module can respond to only one type of communication, UART or SPI, at a time.

1 MICROWIRE™ is a registered trademark of National Semiconductor. For more information on MICROWIRE see
National Semiconductor’s COP8™ Microcontroller Databook or COP8 Feature Family User’s Manual, (March 1998,
Literature Number 620897-004.) On the web, see http://www.national.com.

+5V DIGITAL 1

 3

 5

 7

 9
 11

2

4

6

8

10

12

+5V ANALOG

RECEIVE (UART)

GROUND

GROUND

TRANSMIT (UART)

AVOUT*

J1

ACK

SPI SER_CLK

REQ

SPI SER_OUT

SPI SER_IN

+5V DIGITAL 1

 3

 5

 7

 9

 11

2

4

6

8

10

12

+5V ANALOG

 RECEIVE (UART)

GROUND

GROUND

TRANSMIT (UART)

AVOUT*

J1

ACK

SPI SER_CLK

REQ

SPI SER_OUT

SPI SER_IN

Fig 1.1

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 5

2. UART and SPI Communications Logic and Timing

Although protocols for the two types of communications interfaces are different, both have initialization logic and
timing constrains. Timing information for the Module may be considered at three levels:

• General system timing and initialization
• Timing related to byte/command transfers
• Hardware related timing (max clock rates, etc..)

2.1. General System Timing

When sensor is operating, the internal cycle of the data acquisition and signal processing is 2 seconds. The host could
interrogate the sensor more often for this information, but generally it makes no sense and is not recommended.
Therefor, it is advised to keep the communications cycle for CO2 concentration requests to a multiple of 2 seconds: 2,
4, 6, …etc.

The time interval between other commands is less restricted. In general, with the exception of a Status command
following a Calibration command, a subsequent command can be issued as soon as the reply from the previous
command has been received. For a Status command following a Calibration command, the host should wait at least 2
to 4 seconds before issuing the first Status command. This allows time for the Module to begin the calibration process.

2.2. Initializing Communications at Power-Up

When Module power is first applied, or in case of power brown-outs and other forms of power failure, the Module will
respond to host commands after 5 to 7 seconds. This communications delay time is necessary for the sensor to achieve
full power and initialize.

After initialization, the Module stays in a Warm-up mode. The duration of the Warm-up period is configurable.
Depending on the Module model, the warm-up time can be set anywhere from 6 to 60 seconds. The difference between
Warm-Up and normal operating mode is that in the Warm-Up the module may not yet report accurate readings, and
hence cannot execute any calibration commands. All other commands can be executed during Warm-up.

The Status of the sensor can be checked by using the Status command (see the commands description below). This
command returns the status byte with a number of flags, including the Warm-Up status flag.

The Warm-up mode can be terminated by using the Skip-Warm-Up command.

The gas ppm concentration can be read while the sensor is in Warm-Up mode; however, the data may not be accurate.

The recommended sequence for the host microcontroller communications, for both UART and SPI, is:

• Power-Up
• Wait 5-7 seconds
• Start polling Status Byte every 2 seconds
• Wait for the Status Byte equal to 0
• Start polling the CO2 ppm data every 2 seconds.

NOTE: If for any reason the sensor does not respond to a request, either UART or SPI, simply re-send the command.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 6

2.3. Timing related to byte/command transfers

The Module’s UART communications interface expects a frame size of 8 bits, no parity, one stop bit, and a baud rate
of 9600. The SPI communications protocol utilizes a hand-shaking paradigm to transfer bytes between the Module and
the host, which will be described in detail below.

2.4. Hardware related timing

The RC Oscillator, set to 2 MHz during sensor initialization, maintains the UART baud rate of 9600. The clock rate
for the SPI communications interface is determined by the host. Requirements for the SPI clock rate are discussed
below.

3. UART Serial Communications Interface

The 6000 Series Module CO2 Sensor communicates over an asynchronous, UART interface at 9600 baud, no parity, 8
data bits, and 1 stop bit. When a host computer or PC communicates with the Sensor, the host computer sends a
request to the Sensor, and the Sensor returns a response. The host computer acts as a master, initiating all
communications, and the Sensor acts as a slave, responding with a reply.

All Sensor commands and replies are wrapped in the proprietary Telaire Tsunami Communications Protocol to insure
the integrity and reliability of the data exchange. The Communications Protocol for the serial interface and the
Command Set for the 6000 Series Module CO2 Sensor are described in detail in the sections that follow.

3.1. UART Tsunami Communications Protocol

Each command to the Sensor consists of a length byte, a command byte, and any additional data required by the
command. Each response from the Sensor consists of a length byte and the response data if any. Both the command to
the sensor and the response from the Sensor are wrapped in the Tsunami communications protocol layer.

 Command: <length><command><additional_data>
 Response: <length><response_data>

The communications protocol consists of two flag bytes (0xFF) and an address byte as a header, and a two-byte CRC
as a trailer. In addition, if the byte 0xFF occurs anywhere in the message body or CRC trailer, the protocol inserts a
null (0x00) byte immediately following the 0xFF byte. The inserted 0x00 byte is for transmission purposes only, and is
not included in the determination of the message length or the calculation of the CRC.

Header Message Body Trailer
<flag><flag><address> <Command/Response> <crc_lsb><crc_msb>

When receiving a command or response, the flags and any inserted 0x00 bytes must be stripped from the message
before calculating the verification CRC. A verification CRC should be computed on all received messages from the
sensor and compared with the CRC in the message trailer. If the verification CRC matches the trailer CRC, then the
data from the Sensor was transmitted correctly with a high degree of certainty.

The CRC is computed only on the address and the Message Body. That is, the CRC calculation is performed on the
address byte, the length byte, and all bytes of the Command (including any additional_data bytes) and the Response.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 7

3.2. UART Commands from PC to Sensor

Commands sent from a host computer or PC to the Sensor have the following format:

<flag><flag><address><length><command><additional_data>< crc_lsb><crc_msb >

where:

 <flag> the hex value 0xFF

 <address> one byte hex value. The byte 0xFE is an address to which all sensors respond.

 <length> total length in bytes of the command and additional data

 <command> one byte hex command, values explained below

 <additional_data> may or may not be applicable, depending upon the command

 < crc_lsb><crc_msb > two byte binary CRC (algorithm given below). The CRC is little-endian,

meaning that the least significant byte is given first.

For example, to request Sensor identification, the following command is used:

 0xFF 0x FF 0xFE 0x02 0x02 0x01 0x34 0x25
 <flag> <flag> <address> | | | | <crc_msb>
 <length> | | <crc_lsb>
 | <additional data> = SERIAL_NUMBER
 <command> = CMD_READ

The length of the command is 0x02, since the command CMD_READ, SERIAL_NUMBER consists of the two bytes
“0x02 0x01”.

3.3. UART Response from Sensor to PC

Responses returned from the Sensor to the host computer or PC have the following format:

<flag><flag><address><length><response_data>< crc_lsb><crc_msb >

where:

 <flag> the hex value 0xFF.

 <address> one byte hex value. The byte 0xFA signifies “to master” in a master/slave

 communication.
 <length> total length in bytes of the response data

 <response_data> may or may not be applicable, depending upon the command

 < crc_lsb><crc_msb > two byte binary CRC (algorithm given below). The CRC is little-endian,

that is, the least significant byte is given first.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 8

In response to the above identification command CMD_READ SERIAL_NUMBER, one Sensor replied with the
following byte stream:

0xFF 0xFF 0xFA 0x09 0x4E 0x4F 0x42 0x30 0x30 0x3 0x32 0x34 0x00 0x13 0xB0
<flag> <flag> <address> | <response_data>---| <crc_lsb> |
 <length> <crc_msb>

The nine byte response_data, “4E 4F 42 30 30 31 32 34 00”, translates to the null terminated ASCII string
“NOB00124”, the serial number for that particular sensor.

3.4. UART Acknowledgement or <ACK> Reply

Some commands require that a Sensor only confirm that the command was received and the appropriate action was
taken. In this case, when a Sensor does not need to return data in response to a command, it will instead reply with an
Acknowledgement response, called an <ACK>. This is a response packet formatted as shown above, but with the
<length> equal to 0x00, and no response data present:

0xFF 0xFF 0xFA 0x00 0x0A 0xFC
<flag> <flag> <address> | <crc_lsb> |
 <length> <crc_msb>

Examples of commands that expect an Acknowledgement response are Update Commands, Calibrate Commands, and
the Skip Warmup Command. Detailed descriptions of these commands are given below.

3.5. UART 0xFF Bytes and Zero Insertion

If any field other than the flag field contains the byte 0xFF, the communications protocol inserts a trailing 0x00 byte
immediately following the 0xFF byte. The inserted 0x00 byte is for transmission purposes only, and is not included in
the determination of the message length or the calculation of the CRC. In fact, the 0x00 byte insertion is done after the
CRC is appended to the packet. Hence, if one of the CRC bytes is 0xFF, then the protocol will insert a 0x00 byte after
the 0xFF CRC byte. The following table gives several examples (albeit contrived) of Zero Insertion.

Req> FF FF FE 02 00 FF 00 87 4D

Resp> FF FF FA 01 FF 00 52 09

The request is CMD_LOOPBACK, with data 0xFF. The
<length> is 0x02, the <command> is 0x00, and the
<additional_data> is 0xFF. The protocol inserts a 0x00
following the 0xFF in the <additional_data>.

The 0x00 <command> requests the Sensor to echo back
the <additional_data> from the request packet. So the
<response_data> in the response packet is the single 0xFF
byte.

In the response the <length> is 0x01, and the
<response_data> is 0xFF. The protocol inserts a 0x00
following the 0xFF in <response_data>.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 9

Req> FF FF FE 02 00 F2 2A 9C

Resp> FF FF FA 01 F2 FF 00 D8

The request is CMD_LOOPBACK, with data 0xF2.
The16-bit CRC in the response is 0xD8FF, but it is
written with it’s least significant byte first. Since the
CRC in the response contains an 0xFF the protocol inserts
a 0x00 following the 0xFF.

Req> FF FF FE 02 00 80 FF 00 C2

Resp> FF FF FA 01 80 2A 86

The request is CMD_LOOPBACK, with data 0x80. In
this example the CRC in the request contains a 0xFF and
so the protocol inserts a 0x00 following the 0xFF.

4. SPI Communications Interface Overview

The SPI is a serial synchronous communications interface consisting of an 8-bit serial shift register with serial data
input (SI), serial data output (SO) and serial shift Clock (SK.)

The Module works as a slave on the SPI bus. The external processor is the master. This has two important
consequences. First, the external processor provides the SK clock signal for both sending and receiving data across the
bus. Secondly, all communications are initiated by the external processor, with the Module merely responding. From
the Module’s point of view, during communications with an external processor, its SI (serial in) and SK (serial clock)
are inputs, and its SO (serial out) is an output.

Additionally there are two digital handshake lines that an external processor uses to communicate with the Module:
UB_REQ and UB_ACK. The acronym UB stands for “MICROWIRE Bus”, with the “U” being similar to the Greek
letter, micron. UB_REQ is an input to the Module. UB_ACK is an output from the Module. A conceptual diagram of
the input and output lines is given below:

UW_ACK

CO2

Module

UW_REQ

SI

SO
SK

4.1. SPI Handshaking – Starting To Communicate

Normally, the external processor keeps UB_REQ high and the Module keeps UB_ACK high. When the external
processor wants to communicate with the Module, it lowers UB_REQ then waits until the Module lowers UB_ACK.
This lowering of UB_ACK indicates that the Module is now in SPI bus slave mode and is prepared to communicate
with the external processor. The external processor, as an SPI bus master, can then begin sending the bytes in the
request sequence.

Fig 4.1

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 10

4.2. SPI Sending and Receiving Data

Every data exchange between an external processor and the Module starts with the external processor sending a request
data-packet – several bytes – to the Module. The Module then responds by returning a response data-packet to the
external processor. The request data packet contains a command byte, and perhaps one or more parameter bytes.
Details of the commands and the data associated with each command are shown below in section “Commands.”
Additionally, request and response data-packets are wrapped in a packet protocol described in the section “SPI Packet
Protocol.”

4.3. SPI Handshaking – Between Bytes

After receiving each byte in a request data packet, the Module raises the UB_ACK handshaking line. When it is ready
to receive the next byte it lowers UB_ACK. The external processor may send the next byte to the Module any time
within 10 milliseconds of the time UB_ACK goes low. This handshaking between bytes provides flow control and
insures that the external processor does not overrun the Module’s input buffer and that the Module does not wait
indefinitely for the external processor to send the next byte. After receiving the final byte of the request data-packet,
the Module again raises UB_ACK.

The UB_REQ line remains low during the whole of the request packet operation, and during the response packet
operation, and between the request and response.

When the Module has processed the request and is ready to send the first byte of the response data-packet, the Module
lowers UB_ACK. The external processor has 10 milliseconds from the time the UB_ACK line goes low in order to
start the clock and receive the byte. After transmitting the byte, the Module raises UB_ACK, and lowers it again when
it is ready to transmit the next byte. The process continues until all bytes of the response data-packet have been
transmitted to the external processor. The 10-millisecond time limit insures that the Module does not wait indefinitely
for the external processor to start the clock to receive the byte.

4.4. SPI Handshaking – Ending a Data Exchange

After sending the final byte in a response packet, the Module raises UB_ACK and leaves it high. The external
processor then raises UB_REQ, concluding the data interchange. UB_REQ must stay high longer than a specified
minimum before the external processor lowers it to start any subsequent data exchange (see Timing below).

4.5. Aborting an SPI Data Exchange

If the external processor needs to terminate an incomplete data exchange it raises the UB_REQ line. When the Module
detects this, it discards the contents of its communication buffers and responds by raising UB_ACK.

If the Module needs to terminate an incomplete data exchange, it raises UB_ACK. If UB_ACK remains high longer
than the maximum time specified for UB_ACK High Between Bytes (see Timing below) then the external processor
must recognize this as termination of an incomplete data exchange. For example, if the Module receives bytes that do
not correspond to a valid request data-packet then it raises UB_ACK and holds it high, signaling the termination of an
incomplete data exchange.

The Module starts a 10-millisecond timeout timer each time it lowers UB_ACK. The external processor must respond
by starting the serial shift clock within this interval so that the module can transmit or receive the pending byte. If the

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 11

external processor fails to start the clock, the Module presumes that the communication has been aborted and will raise
UB_ACK.

If either the external processor or the Module terminates a data exchange, no new communication can be initiated until
both UB_ACK and UB_REQ have returned to the high state. The new command then starts with the external
processor lowering UB_REQ as described above.

5. SPI Bus Timing

During SPI communications, the external processor supplies the clock pulse for both sending and receiving data across
the bus. Thus, to an external processor, the Module appears as a slave on the SPI bus.

5.1. SPI SK Shift Clock

To assure compatibility with the previous revisions of the product, the rev X04 modules use hardware implementation
of the MICROWIRE interface emulating the interface of National Semiconductor COP8 microcontroller. Although the
user is not expected to be familiar with the COP8, nevertheless some of the explanations mention COP8
implementation details for the benefit of those who are familiar.

The Module expects the SK serial clock line to be low when it is not being used to clock data over the bus. The
Module samples input data on SI at the rising edge of the SK clock, and clocks (shifts) its SPI shift register on the
falling edge of the SK clock. Thus, the Module’s output data is available on SO for the external processor to sample at
the rising edge of the clock. See the diagram below titled “MICROWIRE Timing, Standard SK Mode.” In the COP8
this is described as standard SK mode with SK clock idle state low.

5.2. SPI Min/Max Timing Issues

Refer to the diagrams below, Fig 5.2 “SPI Write to Module,” Fig 5.3 “SPI Writing to, Then Reading from Module,”
and Fig 5.4 “End of SPI Reading or Writing.”

Parameter Limit Units Condition / Comments
t1 780* u-Sec Typical delay UB_REQ low to UB_ACK low
t2 0 u-Sec Min Minimum elapsed UB_ACK low to first SK rising edge
t3 150* u-Sec Typical delay Byte sent/received to UB_ACK Hi.
t4 200* u-Sec Min Typical minimum UB_ACK high between bytes
t4 440* u-Sec Max Typical maximum UB_ACK high between bytes
fSK MAX 500 KHz Max Maximum SK clock frequency
t5 1 u-Sec Min Minimum SK hi/low pulse width
t7 20 n-Sec Min Data Valid to SK rising edge Setup
t8 56 n-Sec Min Data Valid after SK rising edge Hold
t10 0 u-Sec Min UB_ACK High to UB_REQ High
t11 680 u-Sec Min UB_REQ High between communications exchanges
 *Observed measurement - typical, not limiting.

Table 5.1

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 12

MICROWIRE Timing, Standard SK Mode

Msb

Msb Lsb

Lsb

SK

SIN

SOUT

UB_REQ

UB_ACK

SK

SIN

SPI Write to Module

t1

t2 t5

t5t7 t8

t3 t2

t4

SK

SIN

SOUT

t3 t2

t4

SPI Writing to, Then Reading From Module

UB_ACK

Fig 5.1

Fig 5.2

Fig 5.3

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 13

6. SPI Packet Protocol

Every SPI exchange of data between an external processor and the Module starts with a request data-packet sent to the
Module, followed by a response data-packet returned from the Module. The request and response data-packets are
formatted as follows.

6.1. SPI Request Data-Packet

<flag> <length> <command> [<additional data> …]

<flag> – A single byte, value 0xFE. This signals the start of a request or response data-packet. If the Module
receives a value other than 0xFE as the first byte in a request data-packet then it raises UB_ACK and
leaves it up. This signals that it is terminating an incomplete data exchange.

<length> – A one-byte binary value from 0x01 to 0xFF. Length counts the number of bytes in the command

plus any additional data. If a command has no additional data then length is 0x01. Length of 0x00 is
not valid for a request data-packet. In a response data-packet a length of 0x00 indicates that the packet
is an acknowledgement, “<ACK>”, and no additional data bytes follow the length byte.

<command> -- A one-byte value. See Commands, below. This specifies the nature of the request and also

establishes the meaning of any additional data in the request.

<additional data> -- Zero or more bytes of data, depending on the command. See Commands, below.

6.2. SPI Response Data-Packet

<flag> <length> [<response data> …]

<flag> – A single byte, value 0xFE. This signals the start of a request or response data-packet. If the Module
receives a value other than 0xFE as the first byte in a request data-packet then it raises UB_ACK and
leaves it up. This signals that it is terminating an incomplete data exchange.

<length> – A one-byte binary value from 0x00 to 0xFF. Length counts the number of bytes in response data.

In a response data-packet a length of 0x00 indicates that the packet is an acknowledgement,
“<ACK>”, and no response data bytes follow the length byte.

Fig 5.4 -End of SPI Reading or
i i

t10

t11

UB_REQ

UB_ACK

SK

t3

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 14

<response data> -- Zero or more bytes of data, depending on the command sent in the request data-packet.
See Commands, above.

6.3. Example SPI Data-Packets

A comprehensive list of available commands and their syntax is given in following sections. The following examples
illustrate the use of the SPI packet protocol.

6.3.1. Request to Read Module’s PPM measurement.

<flag> <length> <command> [<additional data> …]
 CMD_READ CO2_PPM

0xFE 0x02 0x02 0x03
 Response indicating 419 PPM CO2. (Note that 419 = 0x01A3.)

<flag> <length> [<response data> …]
 0xFE 0x02 0xA3 0x01

6.3.2. Request to set Module’s elevation to 1000 feet. (Note: 1000 = 0x03E8.)

<flag> <length> <command> [<additional data> …]
 CMD_UPDATE ELEVATION 1000

0xFE 0x04 0x03 0x0F 0xE8 0x03

 Response indicating acknowledgement, “<ACK>.”

<flag> <length>
 0xFE 0x00

6.3.3. Request Module to perform “Skip Warm-up”

<flag> <length> <command>
 CMD_SKIP_WARMUP
 0xFE 0x01 0x91

 Response indicating acknowledgement, “<ACK>.”

<flag> <length>
 0xFE 0x00

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 15

7. Command Reference for the 6000 Sensor

Every common exchange of data between a host processor (or PC) and the Sensor starts with a request data-packet sent
to the Sensor, followed by a response data-packet returned from the Sensor. The request data-packet contains a
command byte telling what data or sensor action is required. The command byte also determines what additional data
is included in the request packet.

Both UART and SPI communications share a common command syntax and repertoire of commands. In fact, both
communication interfaces share the same microcontroller resources for pointers, variables, and message buffers.
Hence, the Module can respond to only one type of communication, UART or SPI, at a time.

NOTE: Each request and response must be wrapped in the appropriate communications interface protocol, either
UART Tsunami or SPI, as described above. The following Command Reference gives only the command syntax and
response only, and omits the protocol wrapping.

In the following Commands Tables, hex bytes are represented as ‘0x12’ for clarity. However, when sending the byte
string in a message, the ‘0x’ notation must be omitted.

7.1. CMD_READ Commands

Req:

Resp:

CMD_READ = 0x02

0x02 <data ID>

<data> [… <data>]

Read a data value or parameter from the Module

Request is the command byte, 0x02, followed by a 1-
byte number that identifies which data value or
parameter to read.

Response is one or more bytes of data.

Details of useful values that can be read from the
6000 Sensor follow.

Req:

Resp:

CMD_READ CO2_PPM

0x02 0x03

<ppm_lsb>, <ppm_msb>

Read the CO2 PPM as measured by the Sensor.

Response is a 2-byte binary value, least significant
byte first, giving the CO2 PPM value between 0 and
65,535.

Req:

Resp:

CMD_READ SERIAL_NUMBER

0x02 0x01

[ASCII string, null terminated, up to 16 bytes]

Read the serial number from the Sensor.

Response is an ASCII string of printable characters,
for example “074177”. The last byte of the response
is a null character, 0x00.

Req:

Resp:

CMD_READ COMPILE_SUBVOL

0x02 0x0D

[ASCII string, null terminated, up to 16 bytes]

Read the compilation subvolume for the Sensor
control software. COMPILE_DATE and
COMPILE_SUBVOL together identify the software
version.

Response is an ASCII string representing, for example

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 16

“\S53\000306”. The last byte of the response is a null
character, 0x00.

Req:

Resp

CMD_READ COMPILE_DATE

0x02 0x0C

[7-byte ASCII string, null terminated]

Read the compilation date for the CO2 module control
software. COMPILE_DATE and
COMPILE_SUBVOL together identify the software
version.

Response is an ASCII string representing a date, for
example “000302” for March 2, 2000. The 7th byte of
the response is a null character, 0x00.

Req:

Resp

CMD_READ ELEVATION

0x02 0x0F

<elevation_lsb> <elevation_msb>

Read the elevation in feet above sea level, a required
operating parameter for the Sensor. The Sensor’s
elevation setting is used to estimate air pressure and is
factored into the calculation of CO2 PPM.

Response is a 2-byte binary value, least significant
byte first, giving the elevation value between 0 and
65,535 feet.

Req:

Resp:

CMD_READ SPAN_CAL_PPM

0x02 0x10

<span_lsb> <span_msb>

Read the CO2 PPM used in the most recent Span
Calibration of the Sensor.

Response is a 2-byte binary value, least significant
byte first, giving the Span Gas concentration between
0 and 65,535 PPM.

Req:

Resp:

CMD_READ SNGPT_CAL_PPM

0x02 0x11

<sngpt_lsb> < sngpt _msb>

Read the CO2 PPM used in the most recent Single
Point Calibration of the Sensor.

Response is a 2-byte binary value, least significant
byte first, giving the Single Point Gas concentration
between 0 and 65,535 PPM.
**Command available on Release 04 or later

7.2. CMD_UPDATE Commands

Req:

Resp

CMD_UPDATE ELEVATION

0x03 0x0F <elevation_lsb> <elevation_msb>

<ACK>

Set/Write the elevation in feet above sea level, a
required operating parameter for the Sensor.
Elevation is expressed as a 2-byte binary value, least
significant byte first.

Response is an “acknowledgement” or <ACK> , a
response data-packet with the length byte set to zero
and no data bytes.

The CMD_UPDATE command should be followed
by the corresponding CMD_READ command to

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 17

verify that the expected value was written.

Req:

Resp:

CMD_UPDATE SPAN_CAL_PPM

0x03 0x10 <span_lsb> <span_msb>

<ACK>

Set/Write the CO2 PPM to be used in the Span
Calibration of the Sensor. The Span value is a 2-byte
binary value, least significant byte first, giving the
Span Gas concentration between 0 and 65,535 PPM.

The CMD_UPDATE command should be followed
by the corresponding CMD_READ command to
verify that the expected value was written.

Req:

Resp:

CMD_UPDATE SNGPT_CAL_PPM

0x03 0x11 < sngpt _lsb> < sngpt _msb>

<ACK>

Set/Write the CO2 PPM to be used in the Single Point
Calibration of the Sensor. The Single Point value is a
2-byte binary value, least significant byte first, giving
the Single Point Gas concentration between 0 and
65,535 PPM.

The CMD_UPDATE command should be followed
by the corresponding CMD_READ command to
verify that the expected value was written.
**Command available on Release 04 or later

7.3. RESET and WARMUP Commands

Req:

Resp:

CMD_WARM

0x84

<ACK> or <no response>

Reset the sensor, which puts it in a known state,
similar to power up. The Sensor initializes itself,
waits a period of time in warm-up mode, and then
starts to measure CO2 PPM. The Sensor attempts to
send an <ACK>, but transmission may be aborted by
the reset.

The Sensor experiences the same communications
delay as at power-up.

Req:

Resp:

CMD_HARD

0xB5

<ACK> or <no response>

Same as CMD_WARM

Req:

Resp:

CMD_SKIP_WARMUP

0x91

<ACK>

When the sensor is powered up or reset, it waits for a
period of time in warm-up mode before starting to
measure CO2 PPM. When the Sensor is in warm-up
mode, CMD_SKIP_WARMUP tells the Sensor to end
warm-up mode and start measuring CO2 PPM.

The command CMD_STATUS can be used to
determine if a sensor is in Warmup Mode.

See Communication Examples, below.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 18

7.4. CALIBRATION Commands

Req:

Resp:

CMD_ZERO_CALIBRATE

0x97

<ACK>

This command tells the Sensor to start zero
calibration. Before sending this command, the zero
gas (such as nitrogen) should be flowing to the sensor.

The <ACK> response indicates that the calibration
request has been received.

To verify that calibration has started, wait 2 to 4
seconds and then send command CMD_STATUS to
see if the calibration bit is set. When calibration is
finished, the calibration bit in the status byte is
cleared.

A zero calibration will not start if a Sensor is in warm-
up mode or in error condition.

See Communication Examples, below.

Req:

Resp:

CMD_SPAN_CALIBRATE

0x9A

<ACK>

This command tells the Sensor to start a Span
calibration. (See “Span Calibration” in
“Communication Examples” below.)

Before sending this command, the Span Gas with a
known CO2 PPM should be flowing to the sensor.
The command CMD_UPDATE SPAN_CAL_PPM
(see above), must be sent to inform the sensor about
the PPM of the calibration gas.

The <ACK> response indicates that the calibration
request has been received.

To verify that calibration has started, wait 2 to 4
seconds and then send command CMD_STATUS to
see if the calibration bit is set. When calibration is
finished, the calibration bit in the status byte is
cleared.

A span calibration will not start if a Sensor is in
warm-up mode or in error condition.

See Communication Examples, below.

Req:

Resp:

CMD_SNGPT_CALIBRATE

0x9D

<ACK>

This command tells the Sensor to start a Single Point
calibration.

Before sending this command, the Single Point Gas
with a known PPM should be flowing to the sensor.

The command CMD_UPDATE SNGPT_CAL_PPM

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 19

(see above), must be sent to inform the sensor about
the PPM of the calibration gas.

The <ACK> response indicates that the calibration
request has been received.

To verify that calibration has started, wait 2 to 4
seconds and then send command CMD_STATUS to
see if the calibration bit is set. When calibration is
finished, the calibration bit in the status byte is
cleared.

A Single Point Calibration will not start if the Sensor
is in warm-up mode or in error condition.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 20

7.5. STATUS and OPERATING Commands

Req:

Resp:

CMD_STATUS

0xB6

<status>

Read a status byte from the Sensor. The status byte
indicates whether the sensor is functioning and is
measuring PPM concentration.

The response is a single byte, <status>, of bit flags.
(Note, bit 0 is the least significant bit.)

Bit 0: Error
Bit 1: Warmup Mode
Bit 2: Calibration
Bit 3: Idle Mode
Bits 4 - 7: (internal)

If a given status bit is “1”, the sensor is in that state or
mode. If a status bit is “0”, the sensor is not in that
mode.

Req:

Resp:

CMD_IDLE_ON

0xB9 0x01

<ACK>

This command tells the Sensor to go into Idle Mode.
In Idle Mode, the Lamp is turned off and no data
collection takes place.

Issuing this command causes the Sensor to reset in
order to enter Idle Mode. Hence, the Sensor
experiences the same communications delay as at
power-up.

Send the CMD_STATUS command to verify that the
Sensor has entered Idle Mode (status bit 3 = 1).

Req:

Resp:

CMD_IDLE_OFF

0xB9 0x02

<ACK>

This command tells the Sensor to exit Idle Mode and
resume data collection.

Issuing this command causes the Sensor to reset in
order to exit Idle Mode. Hence, the Sensor
experiences the same communications delay as at
power-up.

The Sensor goes through Warm-up Mode prior to
resuming data collection.

Send the CMD_STATUS command to verify that the
Sensor has come out of Idle Mode (status bit 3 = 0).

Req:

Resp:

CMD_ABC_LOGIC

0xB7 0x00

<abc_state>

This command queries the Sensor for its
ABC_LOGIC state.

If ABC_LOGIC is ON, <abc_state> = 0x01.
If ABC_LOGIC is OFF, <abc_state> = 0x02.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 21

Req:

Resp:

CMD_ ABC_LOGIC _ON

0xB7 0x01

<0x01>

This command turns the ABC_LOGIC ON. The reply
<0x01> indicates that the ABC_LOGIC has been
turned on.

Req:

Resp:

CMD_ ABC_LOGIC _RESET

0xB7 0x03

<0x01>

This command turns the ABC_LOGIC ON and resets
the ABC_LOGIC to its startup state. The reply
<0x01> indicates that the ABC_LOGIC has been
turned on.

Req:

Resp:

CMD_ ABC_LOGIC _OFF

0xB7 0x02

<0x02>

This command turns the ABC_LOGIC OFF. The
reply <0x02> indicates that the ABC_LOGIC has
been turned off.

7.6. Test Commands

Req:

Resp:

CMD_HALT

0x95

<no response>

This command is used strictly for testing. It tells the
Sensor to put itself into error mode and act as though
a fatal error has occurred. The sensor should
automatically reset itself and go into Warmup Mode.

See Communication Examples, below.

Req:

Resp:

CMD_LOOPBACK

0x00 <data_bytes>

<data_bytes>

This command is used strictly for testing. The
data_bytes (up to 16 bytes) following the 0x00
command are echoed back in the response packet.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 22

7.7. CMD_PEEK Commands (For Completeness Only)

The CMD_PEEK Command is included in the Command Set for completeness only. CMD_PEEK permits the
inspection of a Sensor’s entire RAM and ee-prom memory. Use of the command requires a detailed knowledge of the
Sensors memory map and expertise in interpreting values in IEEE little-endian Floating Point format.

It is strongly recommended that this command not be used unless under the specific direction of the manufacturer.

Req:

Resp:

CMD_PEEK = 0x06

0x06 <page> <addr lsb> <count>

<data> [… <data>]

Read bytes from the Sensor’s memory, (RAM, or
EE_Prom). Read <count> consecutive bytes starting
at address <addr lsb> in memory page <page>.
<count> must be from 1 to16. Sensor’s memory is
organized in 256-byte pages. Pages 0,1, & 2 are
RAM. Pages 10, 11, … 17 are EE_Prom.

Response is <count> bytes of data (1 up to 16 bytes.)

Three examples of values that can be PEEKed are
ELEVATION, SPAN_CAL_PPM, and
SNGPT_CAL_PPM.

Req:

Resp:

CMD_PEEK ELEVATION

0x06 0x11 0x1C 0x04

<elevation_ieee>

Read the elevation above sea level, an operating
parameter for the Sensor.

Response is the elevation represented as a 4-byte,
single precision, IEEE floating point, least significant
byte first, (little endian.) See Appendix 3 on IEEE
Floating Point.

This command is equivalent in function to the
command CMD_READ ELEVATION, which returns
the elevation as an unsigned long.

Req:

Resp:

CMD_PEEK SPAN_CAL_PPM

0x06 0x11 0xA0 0x04

<span_cal_ppm_ieee>

Read the CO2 PPM used in the most recent Span
Calibration of the Sensor.

Response is the CO2 ppm represented as a 4-byte,
single precision, IEEE floating point, least significant
byte first, (little endian.).

This command is equivalent in function to the
command CMD_READ SPAN_CAL_PPM, which
returns the span gas PPM as an unsigned long.

Req:

Resp:

CMD_PEEK SNGPT_CAL_PPM

0x06 0x11 0xA8 0x04

<sngpt_cal_ppm_ieee>

Read the CO2 PPM used in the most recent Single
Point Calibration of the Sensor.

Response is the CO2 ppm represented as a 4-byte,
single precision, IEEE floating point, least significant
byte first, (little endian.).

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 23

This command is equivalent in function to the
command CMD_READ SNGPT_CAL_PPM, which
returns the single point gas PPM as an unsigned long.

7.8. CMD_POKE Commands (For Completeness Only)

The CMD_POKE Command is included in the Command Set for completeness only. A CMD_POKE modifies a
Sensor’s RAM or ee-prom memory and can render a Sensor non-functional if misused. Use of the command requires
a detailed knowledge of the Sensors memory map and expertise in representing values in IEEE little-endian Floating
Point format.

This command must not be used unless under the direct specification of the manufacturer.

Req:

Resp:

CMD_POKE = 0x07

0x07 <page> <addr lsb> <data> [… <data>]

<ACK>

Write bytes to the sensor’s memory, (RAM, or
EE_Prom). Write <count> consecutive bytes starting
at address <addr lsb> in memory page <page>.
<count> must be from 1 to16. Sensor’s memory is
organized in 256-byte pages. Pages 0,1, & 3 are
RAM. Pages 10, 11, … 17 are EE_Prom.

Response is an “acknowledgement” or <ACK> , a
response data-packet with the length byte set to zero
and no data bytes.

The CMD_POKE command should be followed by
the corresponding CMD_PEEK command to verify
that the expected value was written.

Three examples of values that can be POKEd are
ELEVATION, SPAN_CAL_PPM, and
SNGPT_CAL_PPM.

Req:

Resp:

CMD_POKE ELEVATION

0x07 0x11 0x1C <elevation_ieee>

<ACK>

Write an elevation value to the sensor’s memory.
<elevation_ieee> is expressed as a 4-byte, single
precision, IEEE floating point number, least
significant byte first, (little endian.) Elevation is
measured in feet above sea level. The Sensor’s
elevation setting is used to estimate air pressure and is
factored into the calculation of CO2 PPM.

Response is an “acknowledgement” or <ACK> , a
response data-packet with the length byte set to zero
and no data bytes.

The CMD_POKE command should be followed by
the corresponding CMD_PEEK command to verify
that the expected value was written.

This command is equivalent in function to the

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 24

command CMD_UPDATE ELEVATION discussed
above, which writes the elevation as an unsigned long.

Req:

Resp:

CMD_POKE SPAN_CAL_PPM

0x07 0x11 0xA0 <span_cal_ppm_ieee>

<ACK>

Write a CO2 PPM value for the Sensor to use in Span
calibration. <span_cal_ppm_ieee> is expressed as a 4-
byte, single precision, IEEE floating point number,
least significant byte first, (little endian.).

Response is an “acknowledgement” or <ACK> , a
response data-packet with the length byte set to zero
and no data bytes.

The CMD_POKE command should be followed by
the corresponding CMD_PEEK command to verify
that the expected value was written.

This command is equivalent in function to the
command CMD_UPDATE SPAN_CAL_PPM
discussed above, which writes the span gas PPM as an
unsigned long.

Req:

Resp:

CMD_POKE SNGPT_CAL_PPM

0x07 0x11 0xA8 <sngpt_cal_ppm_ieee>

<ACK>

Write a CO2 PPM value for the Sensor to use in
Single Point calibration. <sngpt_cal_ppm_ieee> is
expressed as a 4-byte, single precision, IEEE floating
point number, least significant byte first, (little
endian.).

Response is an “acknowledgement” or <ACK> , a
response data-packet with the length byte set to zero
and no data bytes.

The CMD_POKE command should be followed by
the corresponding CMD_PEEK command to verify
that the expected value was written.

This command is equivalent in function to the
command CMD_UPDATE SNGPT_CAL_PPM
discussed above, which writes the single point gas
PPM as an unsigned long.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 25

8. UART Communication Examples

The following examples illustrate request and response packets with the full UART Tsunami communication protocol.
Requests and responses are expressed in hexadecimal bytes. The <command> portion of a request and the
<response_data> are in bold type.

8.1. UART Read CO2 PPM

Req> FF FF FE 02 02 03 76 05

Resp> FF FF FA 02 50 02 7B B7

In the request “02 03” is CMD_READ CO2_PPM (see
Command Reference, above.)

In the response “50 02” is a 2-byte binary value, least
significant byte first., giving the CO2 PPM as 592 PPM
(592 = 0x0250)

8.2. UART CMD_STATUS to Verify Normal Operation

Req> FF FF FE 01 B6 7F 0C

Resp> FF FF FA 01 00 A2 17

In the request, “B6” is CMD_STATUS (see Command
Reference, above.)

In the response, “00” is the status byte. The zero value
indicates that the Sensor is in normal mode where it is
measuring CO2 PPM. It is not in warm-up mode, it is not
in calibration mode, and it is not in an error condition.

Further examples of CMD_STATUS are given in the
examples below.

8.3. UART Read and Update Elevation

In this set of interchanges we first read the Sensor’s elevation parameter and find it is set at 1000 ft. Then we change
the elevation setting to 2500 ft. Then we read back the new elevation setting and verify that it is set to 2500 ft.

Req 1> FF FF FE 02 02 0F FA C4

Resp1>.FF FF FA 02 E8 03 FE 30

Req 2> FF FF FE 04 03 0F C4 09 4D 64

Resp2> FF FF FA 00 0A FC

Req 3> FF FF FE 02 02 0F FA C4

In request 1, “02 0F” is CMD_READ, ELEVATION (see
Command Reference, above.)

In the first response, “E8 03” is the elevation, 1000 ft
(1000 = 0x03E8).

In request 2, “03 0F” is CMD_UPDATE, ELEVATION,
and “C4 09” is the elevation, 2500 ft (2500 = 0x09C4).

The second response is an <ACK>, since the length is
0x00.

The third request and response are formatted just like the

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 26

Resp3> FF FF FA 02 C4 09 3F D2

first, reading back the new elevation setting, 2500 ft.

8.4. UART Error Simulation with Recovery

In this set of interchanges we first verify that the Sensor is operating normally. Then we send a command that forces
the sensor into an error state. The Sensor automatically recovers by resetting itself, and going into Warmup Mode. We
then send the command to skip warm-up, thus putting the sensor back into the normal state.

Req 1> FF FF FE 01 B6 7F 0C

Resp1> FF FF FA 01 00 A2 17

Req 2> FF FF FE 01 95 7E 18

Req 3> FF FF FE 01 B6 7F 0C

Resp3> FF FF FA 01 02 E0 37

Req 4> FF FF FE 01 91 FA 58

Resp4> FF FF FA 00 0A FC

Req 5> FF FF FE 01 B6 7F 0C

Resp5> FF FF FA 01 00 A2 17

Req 1: CMD_STATUS.

Resp1: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

Req 2: CMD_HALT. Puts sensor in error mode. No
response

Req 3: CMD_STATUS.

Resp3: status byte is 0x02. Bit 1 high indicates Sensor is
in warm-up mode.

(If CMD_STATUS is sent quickly enough, the sensor
may respond with 0x01, indicating the brief error state
prior to reset.)

Req 4: CMD_SKIP_WARMUP.

Resp4: <ACK>

Req 5: CMD_STATUS

Resp5: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 27

8.5. UART Zero Calibration

In this set of interchanges we run a zero calibration on the Sensor. Before sending any commands we start flowing a
zero gas, like nitrogen, to the Sensor. Then we verify that the sensor is in normal operating mode, since calibration
will not work if the sensor is not in normal operating mode. Then we send the zero calibration command to start the
calibration process. We check the Sensor’s status and see that it is in calibration mode. Later we check the status again
and see that the Sensor has finished calibration and returned to normal operating mode.

Req 1> FF FF FE 01 B6 7F 0C

Resp1> FF FF FA 01 00 A2 17

Req 2> FF FF FE 01 97 3C 38

Resp2> FF FF FA 00 0A FC

Req 3> FF FF FE 01 B6 7F 0C

Resp3> FF FF FA 01 04 26 57

Req 4> FF FF FE 01 B6 7F 0C

Resp4> FF FF FA 01 00 A2 17

Req 1: CMD_STATUS.

Resp1: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

Req 2: CMD_ZERO_CALIBRATE. Starts the calibration
process.
Resp2: <ACK>

Wait 2 – 4 seconds.

Req 3: CMD_STATUS.

Resp3: status byte is 0x04. Sensor is in calibration mode.

Req 4: CMD_STATUS.

Resp4: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 28

8.6. UART Span Calibration

In this set of interchanges we run a span calibration on the Sensor. The span calibration adjusts the Sensor’s zero
calibration settings in such a way as to make the Sensor’s CO2 PPM measurement match the span PPM value

In this example, we are flowing a 2000 PPM CO2 gas to the Sensor. We update SPAN_CAL_PPM to 2000 so this
value will be used as the span gas concentration for span calibration. Then we start the span calibration and check the
Sensor’s status until the calibration is completed.

Req 1> FF FF FE 04 03 10 D0 07 66 25

Resp1> FF FF FA 00 0A FC

Req 2> FF FF FE 01 9A 91 E9

Resp2> FF FF FA 00 0A FC

Req 3> FF FF FE 01 B6 7F 0C

Resp3> FF FF FA 01 04 26 57

Req 4> FF FF FE 01 B6 7F 0C

Resp4> FF FF FA 01 00 A2 17

Req 1: “03 10” is CMD_UPDATE SPAN_CAL_PPM,
and “D0 07” is 2000 PPM (2000 = 0x07D0).
Resp1: <ACK>

Req 2: CMD_SPAN_CALIBRATE. Starts the calibration
process.
Resp2: <ACK>

Wait 2 – 4 seconds.

Req 3: CMD_STATUS.

Resp3: status byte is 0x04. Sensor is in calibration mode.

Req 4: CMD_STATUS.

Resp4: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

9. SPI Communication Examples

The following examples illustrate request and response packets with the SPI communications protocol. These are the
same commands that were listed above for the UART communications protocol. Requests and responses are expressed
in hexadecimal bytes. The <command> portion of a request and the <response_data> are in bold type.

9.1. SPI Read CO2 PPM

Req> FE 02 02 03

Resp> FE 02 50 02

In the request “02 03” is CMD_READ CO2_PPM

In the response “50 02” is a 2-byte binary value, least
significant byte first., giving the CO2 PPM as 592 PPM
(592 = 0x0250)

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 29

9.2. SPI CMD_STATUS to Verify Normal Operation

Req> FE 01 B6

Resp> FE 01 00

In the request, “B6” is CMD_STATUS

In the response, “00” is the status byte. The zero value
indicates that the Sensor is in normal mode where it is
measuring CO2 PPM. It is not in warm-up mode, it is not
in calibration mode, and it is not in an error condition.

Further examples of CMD_STATUS are given in the
examples below.

9.3. SPI Read and Update Elevation

In this set of interchanges we first read the Sensor’s elevation parameter and find it is set at 1000 ft. Then we change
the elevation setting to 2500 ft. Then we read back the new elevation setting and verify that it is set to 2500 ft.

Req 1> FE 02 02 0F

Resp1>.FE 02 E8 03

Req 2> FE 04 03 0F C4 09

Resp2> FE 00

Req 3> FE 02 02 0F

Resp3> FE 02 C4 09

In request 1, “02 0F” is CMD_READ ELEVATION

In the first response, “E8 03” is the elevation, 1000 ft
(1000 = 0x03E8).

In request 2, “03 0F” is CMD_UPDATE ELEVATION,
and “C4 09” is the elevation, 2500 ft (2500 = 0x09C4).

The second response is an <ACK>, since the length is
0x00.

The third request and response are formatted just like the
first, reading back the new elevation setting, 2500 ft.

9.4. SPI Error Simulation with Recovery

In this set of interchanges we first verify that the Sensor is operating normally. Then we send a command that forces
the sensor into an error state. The Sensor automatically recovers by resetting itself, and going into Warmup Mode. We
then send the command to skip warm-up, thus putting the sensor back into the normal state.

Req 1> FE 01 B6

Resp1> FE 01 00

Req 2> FE 01 95

Req 1: CMD_STATUS.

Resp1: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

Req 2: CMD_HALT. Puts sensor in error mode. No

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 30

Req 3> FE 01 B6

Resp3> FE 01 02

Req 4> FE 01 91

Resp4> FE 00

Req 5> FE 01 B6

Resp5> FE 01 00

response

Req 3: CMD_STATUS.

Resp3: status byte is 0x02. Bit 1 high indicates Sensor is
in warm-up mode.

(If CMD_STATUS is sent quickly enough, the sensor
may respond with 0x01, indicating the brief error state
prior to reset.)

Req 4: CMD_SKIP_WARMUP.

Resp4: <ACK>

Req 5: CMD_STATUS

Resp5: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 31

9.5. SPI Zero Calibration

In this set of interchanges we run a zero calibration on the Sensor. Before sending any commands we start flowing a
zero gas, like nitrogen, to the Sensor. Then we verify that the sensor is in normal operating mode, since calibration
will not work if the sensor is not in normal operating mode. Then we send the zero calibration command to start the
calibration process. We check the Sensor’s status and see that it is in calibration mode. Later we check the status again
and see that the Sensor has finished calibration and returned to normal operating mode.

Req 1> FE 01 B6

Resp1> FE 01 00

Req 2> FE 01 97

Resp2> FE 00

Req 3> FE 01 B6

Resp3> FE 01 04

Req 4> FE 01 B6

Resp4> FE 01 00

Req 1: CMD_STATUS.

Resp1: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

Req 2: CMD_ZERO_CALIBRATE. Starts the calibration
process.
Resp2: <ACK>

Wait 2 – 4 seconds.

Req 3: CMD_STATUS.

Resp3: status byte is 0x04. Sensor is in calibration mode.

Req 4: CMD_STATUS.

Resp4: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 32

9.6. SPI Span Calibration

In this set of interchanges we run a span calibration on the Sensor. The span calibration adjusts the Sensor’s zero
calibration settings in such a way as to make the Sensor’s CO2 PPM measurement match the span PPM value

In this example, we are flowing a 2000 PPM CO2 gas to the Sensor. We update SPAN_CAL_PPM to 2000 so this
value will be used as the span gas concentration for span calibration. Then we start the span calibration and check the
Sensor’s status until the calibration is completed.

Req 1> FE 04 03 10 D0 07

Resp1> FE 00

Req 2> FE 01 9A

Resp2> FE 00

Req 3> FE 01 B6

Resp3> FE 01 04

Req 4> FE 01 B6

Resp4> FE 01 00

Req 1: “03 10” is CMD_UPDATE SPAN_CAL_PPM,
and “D0 07” is 2000 PPM (2000 = 0x07D0).
Resp1: <ACK>

Req 2: CMD_SPAN_CALIBRATE. Starts the calibration
process.
Resp2: <ACK>

Wait 2 – 4 seconds.

Req 3: CMD_STATUS.

Resp3: status byte is 0x04. Sensor is in calibration mode.

Req 4: CMD_STATUS.

Resp4: status byte is 0x00. Sensor is in normal mode,
measuring CO2 PPM.

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 33

Appendix 1. CRC Calculation

A1.1 CalcCRC

Below is a sample ‘C’ Subroutine for calculating the 2 byte CRC used in the communications protocol:

const unsigned int crc_tab[256] =
{
 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};

WORD CalcCRC(WORD wAccum, BYTE byte)
{
 return (wAccum << 8) ^ crc_tab[((BYTE)(wAccum>>8))^byte];
}

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 34

A1.2 Example Calling CalcCRC

Following is ‘C’ code that wraps the communications protocol around a request packet. The <command> and
<additional_data> are initially in the array bIssue[]. ESCAPE is a literal for the 0xFF <flag> character. The
length of the <command> and <additional_data> is in wLen. The <address> is in lpTSU->ComTarget. And the
fully wrapped request packet is placed in the array pbPacket[].

 j = 0;
 pbPacket[j++] = ESCAPE;
 pbPacket[j++] = ESCAPE;
 pbPacket[j++] = (BYTE)lpTSU->ComTarget;
 wCrc = CalcCRC(0,(BYTE)lpTSU->ComTarget);
 pbPacket[j++] = (BYTE)wLen;
 if (wLen == ESCAPE) {
 pbPacket[j++] = 0;
 }
 wCrc = CalcCRC(wCrc,(BYTE)wLen);
 for (i = 0; i < wLen; i++) {
 pbPacket[j++] = bIssue[i];
 wCrc = CalcCRC(wCrc,bIssue[i]);
 if (bIssue[i] == ESCAPE) {
 pbPacket[j++] = 0; // No CRC on transport material
 }
 }
 pbPacket[j++] = (BYTE)wCrc;
 if (pbPacket[j-1] == ESCAPE) {
 pbPacket[j++] = 0;
 }
 pbPacket[j++] = (BYTE)((wCrc & 0xFF00)>>8);
 if (pbPacket[j-1] == ESCAPE) {
 pbPacket[j++] = 0;
 }

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 35

Appendix 2. Summary of Commands

CMD_READ Commands

Command Request Response
CMD_READ 0x02 <data ID> <data>, [… <data>]
CMD_READ CO2_PPM 0x02 0x03 <ppm_lsb> <ppm_msb>
CMD_READ SERIAL_NUMBER 0x02 0x01

[ASCII string, null terminated,
up to 16 bytes]

CMD_READ COMPILE_SUBVOL 0x02 0x0D [12-byte ASCII string, null
terminated]

CMD_READ COMPILE_DATE 0x02 0x0C

[7-byte ASCII string, null
terminated]

CMD_READ ELEVATION 0x02 0x0F <elev_lsb> <elev_msb>
CMD_READ SPAN_CAL_PPM 0x02 0x10 <span_lsb> <span_msb>
CMD_READ SNGPT_CAL_PPM
 **Command available on Release
04 or later

0x02 0x11 <sngpt_lsb> <sngpt_msb>

CMD_UPDATE Commands

Command Request Response
CMD_UPDATE ELEVATION 0x03 0x0F <elev_lsb> <elev_msb> <ACK>
CMD_UPDATE SPAN_CAL_PPM 0x03 0x10 <span_lsb> <span_msb> <ACK>
CMD_UPDATE _CAL_PPM
 **Command available on Release
04 or later

0x03 0x11 <sngpt_lsb> <sngpt_msb> <ACK>

RESET and WARMUP Commands

Command Request Response
CMD_WARM 0x84 <ACK> or <no response>
CMD_HARD 0xB5 <ACK> or <no response>
CMD_SKIP_WARMUP 0x91 <ACK>

CALIBRATION Commands

Command Request Response
CMD_ZERO_CALIBRATE 0x97 <ACK>
CMD_SPAN_CALIBRATE 0x9A <ACK>
CMD_SNGPT_CALIBRATE 0x9D <ACK>

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 36

STATUS and OPERATING Commands

Command Request Response
CMD_STATUS 0xB6 <status>
CMD_IDLE_ON 0xB9 0x01 <ACK>
CMD_IDLE_OFF 0xB9 0x02 <ACK>
CMD_ABC_LOGIC 0xB7 0x00 <abc_state>
CMD_ABC_LOGIC_ON 0xB7 0x01 <0x01>
CMD_ABC_LOGIC_RESET 0xB7 0x03 <0x01>
CMD_ABC_LOGIC_OFF 0xB7 0x02 <0x02>

TEST Commands

Command Request Response
CMD_HALT 0x95 <no response>
CMD_LOOPBACK 0x00 <data_bytes> <data_bytes>

CMD_PEEK Commands (For Completeness Only)

It is strongly recommended that this command not be used unless under the specific direction of the manufacturer

Command Request Response
CMD_PEEK 0x06 <page> <addr lsb> <count> <data> [… <data>]
CMD_PEEK ELEVATION 0x06 0x11 0x1C 0x04 <elevation, ieee little-endian>
CMD_PEEK SPAN_CAL_PPM 0x06 0x11 0xA0 0x04 <span_cal_ppm, ieee>
CMD_PEEK SNGPT_CAL_PPM 0x06 0x11 0xA8 0x04 <sngpt_cal_ppm, ieee>

CMD_POKE Commands (For Completeness Only)

This command must not be used unless under the direct specification of the manufacturer.

Command Request Response
CMD_POKE 0x07 <page> <addr lsb> <data>[…<data>] <ACK>
CMD_POKE ELEVATION 0x07 0x11 0x1C <elevation,ieee> <ACK>
CMD_POKE SPAN_CAL_PPM 0x07 0x11 0xA0 <span_cal_ppm, ieee> <ACK>
CMD_POKE SNGPT_CAL_PPM 0x07 0x11 0xA8 <sngpt_cal_ppm, ieee> <ACK>

UART_SPI_6004_X04_PROTOCOL_02 Telaire Confidential 37

Appendix 3. IEEE Floating Point

Some Sensor commands use data formatted as 4-byte, single precision, IEEE floating point, least significant byte first,
(little endian.) Following is a description of that numerical format. Although this description depicts the “big endian”
implementation, the 6000 Module CO2 Sensor uses a “little endian” implementation. That is, the order of the bytes in
the Sensor is reversed, so that byte #0 is stored at the next higher address from byte #1, which is stored at the next
higher address from byte #2, etc.

//**//
// //
// IEEE 754 4-BYTE FLOATING POINT FORMAT (BIG ENDIAN) //
// //
// <-- Byte #0 --> <-- Byte #1 --> <-- Byte #2 --> <-- Byte #3 --> //
// --- //
// |7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0| //
// --- //
// |S| Exponent | Mantisa | //
// --- //
// > 1 <----- 8 -----> <------------------- 23 --------------------> //
// //
// Byte 0 is the most significant byte. //
// Byte 3 is the least significant byte. //
// //
// The S bit (located at byte 0 bit 7) flags the sign of the //
// floating point number. This format does NOT use two's //
// complement encoding. The S bit is defined as follows: //
// 0 => Positive //
// 1 => Negative //
// //
// The exponent (located in bytes 0 and 1) is 8 bits long and //
// is positive biased. In the special case of a zero exponent, //
// the entire value of the floating point number is said to be //
// zero and all bits should be cleared. //
// //
// The mantissa (located in bytes 1 through 3) is 23 bits long, //
// but carries 24 bits of information. The implied bit is //
// located in the most significant (bit 23) position. If the //
// exponent is zero, bit 23 (and all other bits) are clear. If //
// the exponent is non-zero, bit 23 is set. //
// //
// When calculating the value of a floating point number that //
// has been stored in this format, one assigns the value 0.5 //
// (1/2) to bit 23, 0.25 (1/4) to bit 22, 0.125 (1/8) to bit //
// 21, and so on. If the exponent is non-zero, and so the //
// implied bit 23 is set, the value will fall between one half //
// and below one. //
// //
// This number (between 0.5 and 1.0) is then multiplied by two //
// raised to the (exponent-126) power. For example, if the //
// exponent contains the binary value 127 and the mantissa is //
// all zeros (except for the implied bit 23), the value this //
// number is 0.5*2^(127-126) = 1.0 (-1.0 if the sign bit is set). //
// //
//**//

