Workshop detached building addition for $22409 \mathbf{1 0 0}^{\text {th }}$ Ave SE, Kent, Wa, 98031 Property locator: 1822059366

Contents

A. Drawing package
Sheet \#
1 Cover sheet
2 Project description
3 Alternate use material, 1.8 cm thick, 13 ply birch plywood per BS 6566 as alternate to APA 24/16 rated OSB or plywood
4 WSEC component energy compliance spreadsheet (excel copy on disk)
5 IRC nailing schedule for reference
6 Cost estimate for evaluation basis
7 Site plan, 1"= 20 ft scale
8 Floor plan, $1 / 4 "=1 \mathrm{ft}$ scale (sheets 8 thru 16 are $1 / 4 "=1 \mathrm{ft}$ scale)
9 Footing plan
10 Stem wall plan
11 Foundation stem and cripple wall and ground level elevations
12 Roof plan
13 North elevation
14 South elevation
15 East elevation
16 West elevation
17 Framing detail
18 Mechanical, plumbing, and IRC electrical plan
19 Reserved
B. 7 sheets of the Kent drawing checklist form with reference to drawing package sheet numbers (attachment to drawing package)
C. 8-1/2 by 11 site plan, scale noted as 1 " $=40 \mathrm{ft}$
-- reduced sized copy from sheet 7,5 separate copies each size
D. 3ea CDs with pdf file of A and B above.

Contacts:

Owner

Kevin and Tami Brockschmidt
22409 100 Ave SE
Kent WA, 98031
Home: 253-856-8053
Bus: 253-856-7026
Technical contact
Art Brockschmidt
Home: 425-255-7113
Cell: 425-213-2566

1. Project description for $22409 \mathbf{1 0 0}^{\text {th }}$ Ave SE addition:

A small (<750 sq ft floor area) woodshop and crafts building is proposed to be added in the 'back yard' of $22409100^{\text {th }}$ Ave SE. The building is intended to make maximum use of recycled materials Generally, the plans are $1 / 4$ " $=1$ foot, and verified by phone call with Kent bldg dept that 11×17 sheets were ok for a small building with that drawing scale.
A level 6 " by 12 " concrete foundation will support a single story, part of the foundation walls are up to 6 ft in height to accommodate the sloping terrain, and up to 4 ft high 2×6 cripple walls will support the building. Rebar schedules are per IRC 2009. The cripple walls are designed per IRC as the first floor of a 2 story building. 2×12 (H/F \#2 or better grade or species) floor joists with 2×12 rim joists rest on $2 x 6$ Pressure treated sills: one portion of the shop will have 18 ft long $2 \times 12 \mathrm{~s}$ on 16 " centers spanning 17'-4"; a second portion will have $12 \mathrm{ft} 2 \times 12$ s on 24 " centers spanning 11 feet, 4". R-11 perimeter insulation and R-38 floor insulation will be used.
Exterior doors at each end of the building provide for crawl space access. The crawl space dirt will be covered with 6 mil black polyethylene. Removed dirt will be spread in a 6" layer over a 120 ft by 30 ft area and to fill in sunken areas of existing yard.
The structural floor is made up of 5 ft by 10 foot sheets of 1.8 cm thick Baltic birch plywood per British specifications BS 6566 and BS 5268. The 'Alternate use material' sheet of this drawing details the source and suitability of this material, and samples accompany the permit application The subfloor nailing will be 8d@6" OC on all joists. The finish floor will be of the same material, with joints offset from the structural layer, with a 4 mil layer of polyethylene sheet between. The finish layer will be attached with finish nails or screws with plugs for appearance and stained.
The walls will be a 2×8 wall of mostly \#2 and better SYP. The wall studs are grade stamped by SPIB, and were salvaged from shipping pallets used to ship 757 engine cowlings from Southern CA to Renton, and all were originally $9 \mathrm{ft}-5$ " long. Some longer \#2 H/F may be used for top plates.
Wall construction will be intermediate type framing, and insulation will be R-25. The interior wall will be $5 / 8$ " drywall over a 4 mill sheet of polyethylene. Sandwiched headers make maximum use of the wall width for rigid insulation between the inside and outside. The sole plate will have one seam of caulking between the floor and plate. The interior wallboard will be taped and painted.
The entire wall will be sheathed with the 1.8 cm Baltic birch plywood. Where there are cripple walls below the floor, the 10 foot sheathing panels will extend across the bottom plates and join at horizontal blocking on the cripple wall. Nail pattern will be 8d @ 6" OC at all studs and blocking The entire exterior will be covered with house wrap, and siding will be hardi-plank to match the existing house.

One large window will be a salvaged 5 ft by 8 foot double pane aluminum framed windows with wood thermal break. The use of 2×8 walls, 2×12 floor joists, and R-49 ceiling insulation provides sufficient margin that the WSEC component performance worksheet shows compliance using the default 0.69 U value for this salvaged window. The additional windows will be new low-e argon filled windows with a labeled U value of 0.29 or 0.30 .

One 23.8 sq ft exterior door is used, and is custom built using 3×4 white oak frame (salvaged from aluminum panel shipping pallets). Dual door panels sandwich 2" insulation.
All windows and the door have top and sill flashing.

The roof and ceiling construction are standard $5 / 12$ rafter and ceiling joist construction, using 2×6 and $2 x 8$ s on 24 " centers. Nailing schedules are per IRC. Ceiling is $5 / 8$ " drywall. Attic access and ventilation are provided for by $22^{\prime \prime}$ by 30 " minimum removable vent panels at each gable
Roof sheathing may be a mix of the 1.8 cm Baltic birch; new $7 / 16$ " $24 / 16$ APA rated OSB; or salvaged APA 40/20 or 48/24 rated plywood (again, from aircraft part shipping crates). Since the birch plywood sheets weigh in excess of 120\# each, we may decide during construction that the effort to install those sheets on the roof outweighs the savings of using the lightweight OSB
Roof sheathing will be covered with 15\# felt lapped 2", with a layer of roll roofing installed in the valleys also. Galvanized drip edges will be used on all edges. Architectural grade asphalt shingles will be the roofing itself.
Gutters: Since the building is adjacent to 20 " to 30 " DBH cedar and Douglas Fir trees, it is preferred that there be no gutters used on that side of the building, as 45 years experience in this area shows that there is no commercial product that can keep fir needles from clogging gutters with the resultant overflows.
An informal ASTM 4829 test on the soil from a test pit was performed. Surprisingly, given the high clay content, the 4 " diameter, 2 inch high sample cylinder of soil showed an expansive index of only 3.4 (7.8 mil expansion after 30 hours soak), well below the IRC limit for draining runoff directly to the ground adjacent to the foundation. Since the side of the building nearest the trees would have less than 3 feet of soil backfill against the foundation, to be on the very safe side, it is proposed that the South and west side gutters be eliminated and the backfill on these sides be gravel - which would also function as an infiltration trench.
The North and East side of the building will have gutters and downspouts.
There will be a $1 / 2$ bath, with a toilet and sink, plus a utility sink in the work area. The existing building 4" PVC sewer pipe is nearby to tie into for sewage. There will be a small tank-less hot water heater. There is an existing hose bib on the present dwelling structure approximately 25 feet from the shop. A T will be installed in this line to provide an underground PVC or PEX supply line to the shop building.
Whole house ventilation is provided by means of the 70 CFM @ 0.25 sp bathroom fan and the $>1 / 2$ " space under the bathroom door. 2 exterior air intake vents are provided.

The WSEC component performance calculations show a 10,595 BTU/hr heat source is needed For the 21 F design temperature, an 18,000 rated $B T U / h r$ mini-split heat pump will provide over $11,000 \mathrm{BTU} / \mathrm{hr}$. Specific model and brand will be selected based on availability and price at the time of installation, and will be >13 SEER rating.

General lighting will be via T-8 fluorescent tubes with electronic ballasts. The exterior door and steps will be illuminated with an exterior wall sconce.
All construction and installations will be by the owner and family. Contact information:
Owner: Kevin Brockschmidt:
Home: 253-856-8053
Business: 253-856-7026
Technical content author: Art Brockschmidt (father)
Cell: 425-213-2566
Home: 425-255-7113

Alternate use material

In accordance with an e-mail response from Bill Zeitler of the Kent building department, the following Technical data is provided. This discussion is intended to establish that the Baltic (aka Finnish) Birch plywood proposed for use is an acceptable 'alternate material' per IRC R104.11; the equivalent of that prescribed in this code. Compliance with the specific performance-based provisions of the International Codes in lieu of specific requirements of this code shall also be permitted as an alternate." Tables at the right are from the BS6566 and BS5268-2 British codes of 1997. The table at the bottom of the page provide specific for the $1.8 \mathrm{~cm}, 13$ ply Baltic Birch the drawing calls out to use for flooring, wall sheathing, and roof sheathing.

Discussion:

Since the mid 1980's until last year, Boeing employees were allowed to salvage shipping crates. The owner's father has salvaged, and stored under cover, a hundred or so 5 foot by 10 foot, 1.8 cm thick sheets of 13 ply birch plywood. These plywood sheets were part of pallets constructed in Carrickfergus, Ireland, and used to ship 737 rudders to Boeing from Short Aircraft in Belfast Ireland. Up to 6 of these sheets were nailed with 5 d nails at approx 3 " OC to $8 \mathrm{~cm} \times 8 \mathrm{~cm}$ stringers, with additional plywood brackets and braces to hold the rudders in place during shipment. Each of the 5×10 sheets has 8 to $16,10 \mathrm{~mm}$ dia bolt holes, which will be plugged during construction with caulking for all sheathing. The BS 6566 marking on these sheets was normally a small ink stamp on the edge(cabinet grade face grain both sides), so very few retain the markings due to handling There are 311 by 17 inch samples of this BS 6566 plywood accompanying the permit application. A Nov, 1990 article in FineHomebuilding magazine described some previous uses of this type salvaged material, which is now called 'green' material.

The proposed use of this plywood is a substitute for APA 24/16 rated osb or plywood. It will be used for no spans over 24 ", even though the strength capabilities are greater than for 48/24 APA rated plywood.
floor sheathing, with the face grain parallel to the span (the face grain is in the 5 ft dimension, floor panels will have the 10 ft dimension across the joists) and will be used for both 16 and 24 OC joists.
as shear panels on the walls with the face grain perpendicular to the 24 " OC 2×8 studs, walls will have intermediate 2×4 studs at the 5 ft OC locations as roof sheathing across 24 " OC rafters, again with the face grain parallel to the span, and, as cabinets and countertops

A comparison of stress and deflection capabilities between $13 \mathrm{py}, .8 \mathrm{~cm}$ birch ply and $23 / 32 \mathrm{D}$ Fir ply is shown in the table below, BS 6566 Birch plywood with the face grain, even perpendicular to the span as proposed for portions of the floor and roof, is stronger than 48/24 APA rated plywood and deflects only 36% that of $24 / 16$ APA rated plywood. The deflection ratio was calculated on the basis of ($1 / \mathrm{E}^{\star} \mathrm{I}$) ratios

Plywood designation	Doug Fir, 1.85 cm, 23/32, 5 ply	Birch, 1.8 cm , 13 ply, per BS 6566	
		Face grain parallel to span	Face grain perpendicular to span
APA span rating	48/24	See discussion	
Extreme fiber stress in bending	$12.9 \mathrm{~N} / \mathrm{m} 2 \quad 1871 \mathrm{psi}$	$17.58 \mathrm{~N} / \mathrm{m} 22550 \mathrm{psi}$	$13.99 \mathrm{~N} / \mathrm{m} 22029 \mathrm{psi}$
Transverse Shear	$0.63 \mathrm{~N} / \mathrm{m} 2 \quad 91 \mathrm{psi}$	$1.32 \mathrm{~N} / \mathrm{m} 2191 \mathrm{psi}$	$1.17 \mathrm{~N} / \mathrm{m} 2 \quad 170 \mathrm{psi}$
Deflection	1 = baseline for 24/16 DF plywood	36\% of deflection	33\% of deflection

${ }^{\text {Trpe and dirir }}$									
							\|ran $\left.\begin{aligned} & \text { an } \\ & (12\end{aligned} \right\rvert\,$		(1) $\begin{gathered}\text { a } \\ \text { (10) }\end{gathered}$
Ezreeme fibe in in beding:									
- face erain paralel to span	${ }_{20}^{20.68} 1$	19,60	${ }_{135}^{1832}$					7.14	
Tentioce rain perenenicular to pan									
	15.17	5s8		12.45	\%	80.16 .70	67016.79		
- pependicuia toice									
- paramenticum	${ }_{\text {cose }}^{10.34}$	${ }_{\substack{10,0 \\ 8.2}}$	9.802	${ }_{872}^{9.70}$	\%20 9.80			(9.50 9.40	9.6.
	3.83	3.93	3.33	33.3	393.93		3.933 .93	3.933 .9	
$\underline{\text { onf tace }}$									
- in face veneer- in back veneer	(123)	${ }_{123}^{123}$	${ }_{123}^{1.23}$	${ }_{123}^{12.23}$	${ }_{123}^{123}{ }_{1}^{1.23}$		${ }_{123}^{123} 12.23$	${ }_{123}^{1.23} 1{ }_{123}^{123}$	${ }_{123}^{123}{ }^{1.23}$
	${ }_{123}^{123}$	${ }_{123}^{12.23}$	${ }_{123}^{123}$	${ }_{123}^{123}$	退		${ }_{123}^{123}$	${ }_{123}^{123} 1122$	${ }_{123}^{123}{ }^{123}$
	(1.41	${ }_{1}^{1.32}$	1.127				1.28 ${ }_{1.9}^{1.38}$		
	4.83	4.83	483	483	${ }_{83} 4.83$.83 4.83	4834.88	4.83 .488
Modulus of elasticity in bending:- face grain parallel to span- face grain perpendicular to span									
	${ }_{\substack{5850 \\ 280}}^{5}$								
- parallel to face grain- perpendicular to face grain			250						
	3500	650	750		200 3800	\% 3850	250 3850	${ }_{80}^{1850} 880$	1800
Shear modulus (for panel shear):- parallel and perpendicular tograin									
	320	320	320	330	330	830	320		3201320

$\begin{aligned} & 36 \\ & 37 \end{aligned}$	36 Vertical Glazing											
38	ID		Description		Ref.	u	Q	Feet	nen	Feet ${ }^{\text {nenh }}$	Area	UA
39	1	2 lasss pela the	lastar	\checkmark	lowes	0.300	3	5		4	60.0	18.0
40	7	291 Alum with	Clear $21 / 2$ "spaer	-	10-6A	0.690	1	8		5	40.0	27.6
41				\checkmark	0	0.000					0.0	0.0
42				\checkmark	0	0.000	0	0		0	0.0	0.0
43		2 lasss pela the	lastar	\checkmark	lowes	0.300	1	4		0	0.0	0.0
44		2 lasss pela the	lastar	\checkmark	lowes	0.300	1	2		4	8.0	2.4
兂						n 0 nn						

150
151
152

Sum of Net Wall Area and UA 1188.0 55.8

ITEM	DESCRIPTION OF BUILDING ELEMENTS	NUMBER AND TYPE OF FASTENER ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$	SPACING OF FASTENERS
Roof			
1	Blocking between joists or rafters to top plate, toe nail	$3-8 \mathrm{~d}\left(2^{1 / 2} 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$	-
2	Ceiling joists to plate, toe nail	$3-8 \mathrm{~d}\left(2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$	-
3	Ceiling joists not attached to parallel rafter, laps over partitions, face nail	$3-10 \mathrm{~d}$	-
4	Collar tie rafter, face nail or $1^{1 / 1 / 4} \times 20$ gage ridge strap	$3-10 \mathrm{~d}\left(3^{\prime \prime} \times 0.128^{\prime \prime}\right)$	-
5	Rafter to plate, toe nail	2-16d ($\left.3^{1 / 2} 2^{\prime \prime} \times 0.135^{\prime \prime}\right)$	-
6	Roof rafters to ridge, valley or hip rafters: toe nail face nail	$\begin{aligned} & 4-16 d\left(3^{1} / 2_{1}^{\prime} \times 0.135^{\prime \prime}\right) \\ & 3-16 d\left(3^{1} / 2_{2}^{\prime \prime} \times 0.135 "\right) \end{aligned}$	-
Wall			
7	Built-up corner studs	$10 \mathrm{~d}\left(3^{\prime \prime} \times 0.128^{\prime \prime}\right)$	24" o.c.
8	Built-up header, two pieces with $1 / 2^{1}$ " spacer	$16 \mathrm{~d}\left(3^{1} / 2^{\prime \prime} \times 0.135{ }^{\text {" }}\right.$)	16" o.c. along each edge
9	Continued header, two pieces	$16 \mathrm{~d}\left(3^{1} / 2^{\prime \prime} \times 0.135{ }^{\prime \prime}\right)$	16" o.c. along each edge
10	Continuous header to stud, toe nail	$4-8 \mathrm{~d}\left(2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$	-
11	Double studs, face nail	10d (3" $\times 0.128^{\prime \prime}$)	24" o.c.
12	Double top plates, face nail	10d (3" $\times 0.128^{\prime \prime}$)	24" o.c.
13	Double top plates, minimum 24-inch offset of end ioints, face nail in lapped area	8-16d ($3^{1 / 2} 2^{\prime \times} \times 0.135$ ")	-
14	Sole plate to joist or blocking, face nail	$16 \mathrm{~d}\left(3^{1} / 2^{\prime \prime} \times 0.135{ }^{\prime \prime}\right)$	16" o.c.
15	Sole plate to joist or blocking at braced wall panels	$3-16 \mathrm{~d}\left(3^{1} / 2^{\prime \prime} \times 0.135^{\prime \prime}\right)$	16 " o.c.
16	Stud to sole plate, toe nail	$\begin{aligned} & 3-8 \mathrm{~d}\left(2^{1 / 2} 2^{\prime \prime} \times 0.113^{\prime \prime}\right) \\ & \text { or } \\ & \left.2-16 \mathrm{~d} 3^{1} / 2^{\prime \prime} \times 0.135^{\prime \prime}\right) \end{aligned}$	-
17	Top or sole plate to stud, end nail	2-16d ($\left.3^{1} / 2^{\prime \prime} \times 0.135^{\prime \prime}\right)$	-
18	Top plates, laps at corners and intersections, face nail	2-10d (3" $\times 0.128$ ")	-
22	Wider than $1^{\prime \prime} \times 8$ " sheathing to each bearing, face nail	$\begin{aligned} & 3-8 \mathrm{~d}\left(2^{1} / 2^{1 "} \times 0.113^{\prime \prime}\right) \\ & 4 \text { staples } 1^{3} / 4^{\prime \prime} \end{aligned}$	-
Floor			
23	Joist to sill or girder, toe nail	$3-8 \mathrm{~d}\left(2^{1 / 2} 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$	-
24	$1 " \times 6$ " subfloor or less to each joist, face nail	$\begin{aligned} & 2-8 \mathrm{~d}\left(2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}\right) \\ & 2 \text { staples } 1^{3} / 4^{\prime \prime} \end{aligned}$	-
25	2" subfloor to joist or girder, blind and face nail	2-16d ($3^{11 / 2 " ~} \times 0.135$ ")	-
26	Rim joist to top plate, toe nail (roof applications also)	$8 \mathrm{~d}\left(2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$	6" o.c.
27	2" planks (plank \& beam - floor \& roof)	2-16d ($3^{1} / 2^{\prime \prime} \times 0.135$ ")	at each bearing
28	Built-up girders and beams, 2-inch lumber layers	10d (3" $\times 0.128{ }^{\text {" }}$)	Nail each layer as follows: 32" o.c. at top and bottom and staggered. Two nails at ends and at each splice.
29	Ledger strip supporting joists or rafters	$3-16 \mathrm{~d}\left(3^{1} / 2^{\prime \prime} \times 0.1355^{\prime \prime}\right)$	At each joist or rafter

ITEM

(continu TABLE	ed) 2602.3(1)-co	tinued FASTE	ENER SCHEDULE FOR STRUCTURAL MEMBERS			
ITEM $\begin{aligned} & \text { D } \\ & \text { M }\end{aligned}$ Wood s	ESCRIPTIONATERIALS	OF BUILDING	DESCRIPTION OF FASTENER ${ }^{\text {b, }, \text {, e }}$		SPACING OF FASTENERS	
					Edges (inches) ${ }^{\text {i }}$	Intermediate supports ${ }^{\mathrm{c}, \mathrm{e}}$ (inches)
	ructural pane	s, subfloor, roo	of	nd interior wall sheathing to framing and pa	eboard wall	heathing to fram
30	$\beta^{\prime \prime}-1 / 2^{\prime \prime}$			6 d common ($2^{\prime \prime} \times 0.113^{\prime \prime}$) nail (subfloor wall) 8d common $\left(2^{1} 2_{2}{ }^{1 \times 0.131 ")}\right.$) nail (roof) ${ }^{\text {t }}$	6	12^{9}
31	32"-1"			8d common nail ($1^{1 / 2} 2^{\prime \prime} \times 0.131^{\prime \prime}$)	6	12^{9}
32	${ }^{1 / 8 \prime}{ }^{\prime \prime}-1^{1 / 4}{ }^{\prime \prime}$			10d common ($3^{\prime \prime} \times 0.148^{\prime \prime}$) nail or $8 \mathrm{~d}\left(2^{1} / 2^{2} \times 0.131^{\prime \prime}\right)$ deformed nail	6	12
Wood siructural panels, combination subfloor underlayment to framing						
37	4" and less			6 d deformed ($2^{\prime \prime} \times 0.120^{\prime \prime}$) nail or 8d common ($2^{1} / 2^{\prime \prime} \times 0.131^{\prime \prime}$) nail	6	12
38	"-1"			8 d common ($2^{1 / 2^{\prime \prime}} \times 0.131^{\prime \prime}$) nail or 8 d deformed $\left(2^{1} / 2^{\prime \prime} \times 0.120^{\prime \prime}\right)$ nail	6	12
39	$1 / 8{ }^{\prime \prime}-1^{1 / 4}{ }^{\prime \prime}$			10d common ($3^{\prime \prime} \times 0.148^{\prime \prime}$) nail or 8 d deformed $\left(2^{1} 1_{2} \times 0.120^{\prime \prime}\right)$ nail	6	12
Notchi electric Fill ope fibergl 2x8 st edge n There The $2 x$ the ho	ing and drilli he framing qal conduit nings arou ass or rock ids and top ore than 1 will be NO 12 joists m e at least 2	ing of joists and for this shop and wire, he hd vents, pip wool to resist and bottom 5 " from the potching of ay be drilled from the jo	and studs will comply with the applicable sections of IRC. has full top and bottom plates, the only openings will be around at pump cables, and plumbing piping. pes, ducts, cables and wires at ceiling and floor level with stuffed t the free passage of flame and products of combustion. plates may have no larger than 2 " dia holes drilled with the hole edges. 2×8 studs may be notched 1.5 ". any joist. up to 3-3/4 inch diameter within 4 feet of the ends with the edge of ist edge.			

Valuation, based on actual cost and estimated labor : \$21,553 (e.G. salvaged materials zero cost)

Material	QTY	\$\$/per	total
Concrete	8 yds	\$100	\$800
Form ties	250		\$250
Forms, stakes, etc	salvaged		
Rebar	800	\$0.40	\$320
Galv bolts	35	\$2	\$70
Plate Washers	35	\$1.50	\$45
Sesmic anchors	6	\$15	\$90
Galv 16d	1 box		\$150
Galv 8d	1 box		\$120
8d	2 box		\$150
10d	2 box		\$150
16d	3 box		\$250
Roofing nails	1 box		\$40
Siding nails	1 box		\$110
Sill PT 2x6	150 If	\$1/ft	\$150
2X12s (H/F)	500 If	\$1/ft	\$500
2×12 salvage	500 If	salvaged	
Sheathing	3600 sq ft	salvaged	
OSB if needed	25 sheets	\$9	\$225
Polyethlyene	5 rolls	\$60	\$300
2×8 by 8 ft	120	salvaged	
2×6 rafters	600 If	\$0.80	\$480
2×6 ceiling	1501f	\$0.80	\$120
2×8 ceiling	350 If	\$0.90	\$315
15\# felt	10 rolls	\$28	\$280
Roll roof	1 roll	\$45	\$45
Roofing	11 sqs	\$150	\$1,650
Siding	3600 If	\$0.50	\$1,800
Drip edge/flash	300 If	\$0.30	\$90
House wrap	2 rolls	\$120	\$240
Caulking	2 cases	\$50	\$100
Wallboard	60 shts	\$10	\$600
Wallboard screws	1 box	\$60	\$60
Doors	2	salvage	
Interior molding ar		salvage	
Plumbing	1 set		\$1,000
Electrical	1 set		\$1,000
Heat Pump	11.5 T	\$1,200	\$1,500
Insulation	house set		\$1,950
Vents/ Fan	1 set		\$170
Paint/stain	20 gal	\$1 surplus	\$20
Fuel	30 gal	\$ 5 gal	\$150
Labor @ 0.7 hr sqft	560 hrs	\$9.04	\$5,063
Misc. (tools wear, etc)			\$1,200
TOTAL valuation			\$21,553

INTERIOR FINISIL
TAPED E/8 DRYWALL
LATEX PAINT
WINDOW SILLS \& DOOR FRAME RESAWIN
PALLETSW/STAIN palletsw/ stain STAINES BIRCH FLOOR

723 SQFT FLOOR
723 SQFT FLOOR
$8 \%=5854 \mathrm{FT}$
$8 \%=5854 \mathrm{FT}$
WINDOW AREA $=1245 Q F$ OPENABLE $=42 \mathrm{SQ} \mathrm{FT}$ WITH DOOR $=64$ SQ FT

$2-2 \times 6$ EACH END STUDS
2×12 RIM JOISTS (ALL AROON)

DOUBLE LAYER OF FLOOR - 4 MIL POLY BETWEEN LAYERS
NAIL BOTTOM LAYER 8 © @ $6^{\circ} 0 . C$ ALL JOISTS
TOP LAYER IS FINISHED FLOOR, PLUGGED SCFEWS OR Bd FINISA NFILS

CEILING HEADER
3-2×8

$$
\begin{aligned}
& 3-2 \times 8 \\
& \text { FLOOR GIRDER }
\end{aligned}
$$

- DOUBLE
JOIST

ATTIC ACCESS AND
CRAWL SPACE ACCESS VIA
EXTERNAL POORS TO HELP PRESERVE BUILDING ENVELOPE INTEGRITY

HLL WBLLS CONSTIRUCTED
AS BRACED WALLS
$1,8 \mathrm{~cm} 13$ PLY BIRCH RCY SHEATHINL
WITH 日d NAILS O $6^{\prime O} O$ ON $24^{\prime} O C^{\prime} 2 \times 8$ STUDS

STEPS 7"RISE 11/4"RNN DETAIL PAGE

STAIRS OF PT LUMBER

BULLT TO MATCII FLNAC GRADE - $11 \frac{1 / 4}{4}$ RUN; $\langle 7$ "RISE $4 \overline{8}^{\prime \prime}$ WIDE BOLT 2×6 PT LEDEGR TO $1 /$ "D, A 2
2×12 SIL JOIST WITA 3 ea H,D. GALV BOLTS.
$36^{\prime \prime}$ RAILING BOTH SIDES
36* GUARD RAIL BOTH SIDE
4 "MAX OPENING BANNISTERS
-'0" $1-2 \times 8$ STUD EACH END HEADER NO GHOV FRAMING OR BETTER
(TYPICAL)

SCALE $1 / 4^{\prime \prime}=1$ FT
FlOOR Plan
$22409100^{\text {T/A AUE SE }}$
KEVIN BROCKSCHMIDT
253-856-8053
ART BROCK SCIHMIDT
$1-2 \times 12$ (PARALLEL
TO JOISTS)
GIRDER, BELOW $2-2 \times 12 ; 6^{\prime}-3^{\prime \prime}$ SPAN
(DOUBCE JOIST) 2ea 2×6 POSTS EACH END
ARt Breock selimidt

AND 5^{\prime} O.C INTERMEDIATE 2×4 (OR 2×6) STUOS INA AODITION.
SHEET 8 of 19

WEST

$$
\begin{aligned}
& \text { SOUTH ELEUATION } \\
& 22409 \text { 10OIF AUE SE }
\end{aligned}
$$

> MECIHAWICAL \& PLUMBING 22409100 TH AVE SE ART BROCKSCHMIDT $425-213-256 C$

